π€οΈ Bayangan Garis X 2Y 5 Bila Ditransformasi Dengan Matriks
Transformasi1. M adalah pencerminan terhadap garis x + y = 0. R adalah rotasi sejauh 90 searah jarum jam dengan pusat O. Tentukan matriks transformasi yang bersesuaian dengan R o M !
Cekvideo lainnya. Teks video. halo, coverin disini kita akan mencari bayangan dari garis ini yang ditransformasikan oleh matriks ini kemudian dilanjutkan dengan pencerminan terhadap sumbu x maka kita bisa Misalkan ini adalah transformasi 1 dan oleh sumbu x pencerminannya ini transformasi dua matriks transformasi pencerminan terhadap sumbu x
Bayangangaris x-2y=5 bila ditransformasi dengan matriks transformasi (3 5) (1 2) dilanjutkan dengan pencerminan terhadap sumbu x adalah - 20051189 NrRahmadhani13 NrRahmadhani13 30.11.2018 Matematika Sekolah Menengah Atas terjawab
Persamaanbayangan garis y = 2x β 3 karena refleksi terhadap garis y = βx , dilanjutkan refleksi terhadap y = x adalah. A. y + 2x β 3 = 0 B. y β 2x β 3 = 0 C. 2y + x β 3 = 0 D. 2y β x β 3 = 0 E. 2y + x + 3 = 0. 8) UN Matematika IPA 2012 Bayangan garis x β 2y = 5 bila ditransformasi dengan matriks transformasi
Bayangantitik A dan B oleh pencerminan terhadap pusat O adalah A'(-1, 0) dan B'(0, -1).Jika bayangannya ini kita susun menjadi matriks kolom, akan diperoleh matriks yang bersesuaian dengan pencerminan terhadap pusat O, yaitu : $$\mathrm{M_{O}}=\begin{bmatrix}
UN20123. Bayangan garis x - 2y = 5 bila ditransformasi dengan 3 5 matriks transformasi dilanjutkan dengan 1 2 pencerminan terhadap sumbu X adalah A. 11x + 4y = 5 C. 4x + 11y = 5 B. 4x + 2y = 5 D. 3x + 5y = 5 Masukkan ke persamaan garis: y = 2x - 3 = Jawabannya adalah B x y x' = - x
P(3,5) β P'(3 + (-2), 5 +3 ) Jadi bayangan titik P(3,5) oleh translasi T= β 3 2 adalah (1, 8) B. Pencerminan (Refleksi) Transformasi yang memindahkan titik-titik dengan menggunakan sifat bayangan oleh suatu cermin. 1. Pencerminan terhadap sumbu X (dilambangkan dengan MX)
3x+ 2y β€ a + 5x + 5y β€ 8 + a. 5 (x + y) β€ 8 + a. 5 (10) β€ 8 + a. Ordo dari transpose matriks adalah 2 x 3. dan ditulis . Invers matriks adalah kebalikan (invers) dari sebuah matriks yang apabila matriks tersebut dikalikan dengan inversnya, akan menjadi matriks identitas. Invers matriks dilambangkan dengan A-1.
. bayangan garis x-2y=5 bila di transformasi dengan matriks transformasi [3 5][1 2] dilanjutkan dengan pencerminan terhadap sumbu x adalah... dibantu yaa... Maaf, yg bawah kurang jelas, jadi jawabannya adalah d Pertanyaan baru di Matematika Diketahui suku kelima dan suku ke enam belas suatu barisan aritmatika adalah 19 dan 52. Tentukan suku ke 25 barisan tersebut...β sebuah kubus memiliki panjang rusuk 9 cm luas permukaan kubus tersebut adalahβ jangkauan dari data 25,30,18,16,45,20,15,40 adalahβ 11. Perbandingan pupuk Nitrogen, Fosfor, dan Kalium yang biasa digunakan Deri di kebun miliknya adalah 532. Jika 1 hektare tanah memerlukan pupuk Ka β¦ lium sebanyak 100 kg, banyaknya pupuk nitrogen yang diperlukan untuk 1 hektare tanah di kebun Deri adalah...β berapakah suku bunga yang diberikan jika jumlah pokok pinjaman yang diberikan adalah juta dengan jumlah bunga yang didapat sebesar β¦ .000 juta?β
Kelas 11 SMATransformasiTransformasi dengan MatrixGaris y=2x-5 ditransformasikan oleh transformasi yang berkaitan dengan matriks 2 3 1 4. Persamaan bayangan garis itu adalah ....Transformasi dengan MatrixTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0035Matriks yang bersesuaian dengan refleksi terhadap garis y...0342Pada pemetaan Ax, y->A'y, -x, matriks transformasi ya...0205Bayangan titik 1,-3 jika ditransformasikan oleh matriks...0355Sebuah garis 3x+2y=6 ditranslasikan dengan matriks 3 -4...Teks videoBaiklah pada pembahasan soal kali ini garis y = 2 x minus 5 ditransformasikan oleh transformasi yang berkaitan dengan matriks 2 3 1 4 persamaan bayangan garis itu adalah baik pertama saya lakukan transformasi dulu dari X Y menjadi X aksen D aksen dengan matriks transformasi t 2/3 1/4 na caranya adalah matriks yaitu matrik kolom Excel ini sekali kan dengan matriks transformasi 2314, maka Chevrolet matriks kolom X dan Y aksen nah kemudian yang kedua saya akan mencari X dan y dinyatakan dalam X aksen dan Y Nah maka x y matriks transformasi ini saya pindahkan ke sebelah kanan menjadi matriks invers 2 3 1 4 invers X aksenY aksen nah kemudian x y untuk mencari invers dari ini dari matriks Ini pertama kita cari dulu sabar determinan dari matriks b. 1 per determinannya adalah 1 dibagi 2 * 4. Jadi di sini juga kali 4. Jadi determinan ini adalah 2 * 4 dikurang 3 * 1 kemudian setelah itu saya kalikan dengan matriks adjoin matriks adjoin nya itu adalah Jika kita ingin mencari adjoint khusus untuk matriks ordo dua kali dua ini caranya gampang sekali yang pertama untuk bagian diagonal ini kita tukar tempatnya jadi di sini 24 maka menjadi 42 kemudian yang bagian diagonal ini kita ubah tandanya jadi di sini menjadi min 1 dan di sini min 3 C tapi ini hanya berlaku untuk matriks ordo 2 * 2 udah di sini saya x x aksen aksenChevrolet x y = 1 per 2 x 488 kurang 35 jadi 1 per 5 dikali 4 min 3 MIN 12 x aksen y aksen kemudian Sin 1 x y = 1/5 1 1/5 Kemudian untuk matriks 2 * 2 ini sekali kan dengan matriks kolom X aksen ya kan nah cara mengalikan nya yang pertama yang baris pertama ini saya tutup dulu ya baris kedua baris pertama ini saya kalikan dengan x aksen dan b aksen 4 x x aksen adalah 4 x aksen ditambah minus 3 x y aksen adalah min 3 Y aksen Kemudian untuk baris kedua sekali kan dengan x aksen dan b aksen min 1 x x aksen adalah minus X aksen x + 2 * xnanti Chevrolet xxx Maaf X Y = 1/5 nya saya masukkan saja jadi saya per 4 per 5 x aksen dikurang 3 per 5 y aksen kemudian minus X aksen per 5 ditambah 2 per 5 y aksen maka saya peroleh eksitu eksitu = 4 atau 5 x aksen dikurang 3 per y aksen sedangkan yang isinya itu adalah sama dengan minus X aksen per 5 + 2 per 5 y aksen selanjutnya X dan Y ini saya ke persamaan 2y = 2 x 5 maka kita peroleh kita peroleh minus X aksen phi per 5 + 2 per 5 y= 2 x x 2 x x x nya adalah ini 4 per 5 x aksen dikurang 3 per 5 y aksen kemudian 5 nah, kemudian ini kita peroleh minus X aksen phi per 5 + 2 per 5 y aksen = 2 x 488 per 5 x 2 x 3 adalah 6 jadi min 6 per 5 y aksen dikurang 5 kemudian tiap ruas ruas kiri dan ruas kanan sekali dengan 5 server oleh X aksen ditambah 2 y aksen = 8 x dikurangi 6 y aksen dikurang 25 Nah kemudian ini saya peroleh ini tindakan semua ke sebelah kanan diperoleh 0 = 8 min x aksen Ketika saya pindahkan ke sebelah kanan jadi + 8 x ditambah min x aksen itu sambilKemudian min 6 X dikurang 2 y aksen adalah minus 8 y aksen kemudian dikurang 25 atau ini kita juga bisa Nyatakan dalam X dan kan kita peroleh 0 = 9 X dikurang 8 y dikurang 25 Nah ini adalah bayangan Garis dari setelah ditransformasikan dengan transformasi 2/3 1/4 dan pada pilihannya itu adalah a. Baiklah sampai ketemu lagi di pembahasan soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
MatematikaGEOMETRI Kelas 11 SMATransformasiTransformasi dengan MatrixPersamaan bayangan garis 3x+5y-7=0 oleh transformasi yang bersesuaian dengan matriks 1 -1 -1 2 dilanjutkan dengan 3 2 2 1 adalah ....Transformasi dengan MatrixTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0035Matriks yang bersesuaian dengan refleksi terhadap garis y...0342Pada pemetaan Ax, y->A'y, -x, matriks transformasi ya...0205Bayangan titik 1,-3 jika ditransformasikan oleh matriks...0355Sebuah garis 3x+2y=6 ditranslasikan dengan matriks 3 -4...Teks videosini kita mempunyai soal diketahui garis persamaan bayangan garis tersebut jika ditransformasi pertama oleh matriks 1 min 1 1 2, maka matriks A lalu dilanjutkan dengan matriks 32 21, Saya beri nama matriks B dari sini kita pertama kan masing-masing kan oleh matriks yang sesuai dengan dari x koma Y yang awal ditransformasi oleh mati jadi X aksen aksen maka persamaan 3 = matriks 1 1 1/2 * X = 1Tapi kita tidak usah lagi saja di akhir lalu sekarang kita lanjut ya sen ditransformasikan oleh matriks B jadi Pasar Senaken koma y aksen aksen maka jadi es Aksan Aksan Aksan Aksan = matriks b. 2 21 ini aksen = minta segitu sih makanya 3221 kan aku minta satu sampai dua kali aksi sekarang kita kalikan dulu matriks ya jadi 3 dikali 1 ditambah 2 dikali minus 13 minus 213 dikali minus13 kiri bawah 1 ditambah 1 dikali 12 11 bawah kanan 2 * 1 + 1 * 2 * 0 sekarang rumus invers matriks karena kita ingin mengubah bentuknya menjadi suatu Oleh karena itu dari sini invers matriks dari 1 1 1 0 adalah 11. Tentukan matriks M maka F invers x adalahTentukan satu kali satu kali dinya itu mau 1 - 1, maka = 4 - 1 di sini negatif semua akan jadi 0 1 1 1 matriks invers dari sini Kenapa Kan x = 11 x x aksen aksen = Xsekarang ini garis 3x + 5 y 7 = 0, maka dari masing-masing mendapatkan X yaitu menjadi Yasin Asen Asen Asen Asen Asen sekarang kita hilangkan menjadi persamaan biasa menjadi 3 y ditambah 5 x 5 y 7 = 0 di sini menjadi= 0 maka dari itu jawabannya ini solusinya
bayangan garis x 2y 5 bila ditransformasi dengan matriks